Trigonometric Ratios

Suppose θ is any angle in standard position, and P (x,y) is any point on its terminal arm, at a distance of r from the origin. The value of r can then be determined using the Pythagorean Theorem, $r = \sqrt{x^2 + y^2}$

PRIMARY TRIGONOMETRIC RATIOS

The three primary trigonometric ratios can be defined in terms of x, y, and r as follows:

$$\sin\theta = \frac{opp}{hyp} = \frac{y}{r}$$
 $\cos\theta = \frac{adj}{hyp} = \frac{x}{r}$ $\tan\theta = \frac{opp}{adj} = \frac{y}{x}$

RECIPROCAL TRIGONOMETRIC RATIOS

The three reciprocal trigonometric ratios can be defined in terms of x, y, and r as follows:

cosecant
$$\theta = \frac{1}{\sin \theta}$$
 secant $\theta = \frac{1}{\cos \theta}$ cotangent $\theta = \frac{1}{\tan \theta}$
OR, abbreviated and in terms of x, y, and r:
 $\csc \theta = \frac{r}{y}$ $\sec \theta = \frac{r}{x}$ $\cot \theta = \frac{x}{y}$

THE CAST RULE Quadrant II Y Quadrant I The six trigonometric ratios of any angle in the *first* quadrant are always positive, however, this is not the case in the other quadrants. For each quadrant, we will determine the sign for each of the *primary* trigonometric ratios and summarize the results with the CAST rule. Quadrant II Y Quadrant I Quadrant II Quadrant II Quadrant II Quadrant II Quadrant I Quadrant II Quadrant II Quadrant II Quadrant II

We can determine the six trigonometric ratios for any angle in standard position using:

- i. the coordinates of the point where terminal arm intersects the unit circle, and/or
- ii. the special triangles

Example 1: Determine the Trigonometric Ratios for Angles in the Unit Circle

The point $A\left(\frac{-12}{13}, \frac{5}{13}\right)$ lies at the intersection of the unit circle and the terminal arm of an angle θ in standard position.

a. Draw a diagram to model the situation.

b. Determine the values of the six trigonometric ratios for θ . Express your answers in lowest terms.

Example 2: Exact Values for Trigonometric Ratios

Exact values for the trigonometric ratios can be determined by using the unit circle or special triangles.

Determine the exact value for each trigonometric ratio.

2 <u>5π</u> 6 c 315°	 b. cos -2π/3 d. tan 180°

Example 3: Approximate Values of Trigonometric Ratios

You can determine approximate values for sine, cosine and tangent using a calculator. Remember to set your calculator to either degree or radian setting, depending on the question. To find the value of a trigonometric ratio for cosecant, secant or cotangent, use the appropriate reciprocal relationship.

For example, $\csc 4.1 = \frac{1}{\sin 4.1} = -1.2220$ (Set calculator to radians)

Determine the approximate value for each trigonometric ratio. Give your answers to four decimal places.

Example 4: Evaluating Trigonometric Ratios

Determine the *exact* value for each of the following trigonometric expressions.

a. $\sin 45^\circ \cos 45^\circ + \sin 30^\circ \sin 60^\circ$

b.
$$\frac{2\sin^2\frac{3\pi}{4} + \cos^2\frac{5\pi}{6}}{\cos\frac{2\pi}{3}}$$

c. $\frac{3\cos 180^\circ + \sin 135^\circ}{\sin 30^\circ}$

Example 5: Calculating Trigonometric Values for Points Not on the Unit Circle

The point A(6, -8) lies on the terminal arm of an angle θ in standard position.

- a. What is the exact value of each trigonometric ratio for θ ?
- b. Determine θ in the domain $-4\pi \le \theta \le 4\pi$.

Solution:

Example 6: Find Angles Given Their Trigonometric Ratios

Determine the measures of all angles that satisfy the following.

- a. $\cos \theta = 0.598472$ in the domain $0 \le \theta < 2\pi$. Give your answers to the nearest tenth of a radian.
- b. $\sin \theta = -0.819152$ in the domain $0^{\circ} \le \theta < 360^{\circ}$. Give your answers to the nearest degree.
- c. $\cos \theta = \frac{-\sqrt{2}}{2}$ in the domain $0 \le \theta < 4\pi$. Give exact answers.
- d. $\tan \theta = \frac{1}{\sqrt{3}}$ in the domain $-180^\circ \le \theta < 180^\circ$. Give exact answers.
- e. $\csc \theta = -\frac{2}{\sqrt{3}}$ in the domain $-2\pi \le \theta < \pi$. Give exact answers.

Solution:

a. $\cos \theta = 0.598472$ in the domain $0 \le \theta < 2\pi$. Give your answers to the nearest tenth of a radian.

b. $\sin \theta = -0.819152$ in the domain $0^{\circ} \le \theta < 360^{\circ}$. Give your answers to the nearest degree.

c.
$$\cos \theta = \frac{-\sqrt{2}}{2}$$
 in the domain $0 \le \theta < 4\pi$. Give exact answers.

d.
$$\tan \theta = \frac{1}{\sqrt{3}}$$
 in the domain $-180^\circ \le \theta < 180^\circ$. Give exact answers.

e.
$$\csc heta = -\frac{2}{\sqrt{3}}$$
 in the domain $-2\pi \le heta < \pi$. Give exact answers.